Go 接口设计原则

Go 接口设计原则

参考:原文链接

1.1 平铺式的模块设计

那么作为interface数据类型,他存在的意义在哪呢? 实际上是为了满足一些面向对象的编程思想。我们知道,软件设计的最高目标就是高内聚,低耦合。那么其中有一个设计原则叫开闭原则。什么是开闭原则呢,接下来我们看一个例子:

package main

import "fmt"

// 我们要写一个结构体,Banker 银行业务员
type Banker struct {
}

// 存款业务
func (this *Banker) Save() {
    fmt.Println( "进行了 存款业务...")
}

// 转账业务
func (this *Banker) Transfer() {
    fmt.Println( "进行了 转账业务...")
}

// 支付业务
func (this *Banker) Pay() {
    fmt.Println( "进行了 支付业务...")
}

func main() {
    banker := &Banker{}

    banker.Save()
    banker.Transfer()
    banker.Pay()
}

代码很简单,就是一个银行业务员,他可能拥有很多的业务,比如Save()存款、Transfer()转账、Pay()支付等。那么如果这个业务员模块只有这几个方法还好,但是随着我们的程序写的越来越复杂,银行业务员可能就要增加方法,会导致业务员模块越来越臃肿。

这样的设计会导致,当我们去给 Banker 添加新的业务的时候,会直接修改原有的 Banker 代码,那么 Banker 模块的功能会越来越多,出现问题的几率也就越来越大,假如此时 Banker 已经有 99 个业务了,现在我们要添加第 100 个业务,可能由于一次的不小心,导致之前 99 个业务也一起崩溃,因为所有的业务都在一个 Banker 类里,他们的耦合度太高,Banker 的职责也不够单一,代码的维护成本随着业务的复杂正比成倍增大。

1.2 开闭原则设计

那么,如果我们拥有接口, interface这个东西,那么我们就可以抽象一层出来,制作一个抽象的 Banker 模块,然后提供一个抽象的方法。 分别根据这个抽象模块,去实现支付Banker(实现支付方法),转账Banker(实现转账方法)

如下:

那么依然可以搞定程序的需求。 然后,当我们想要给 Banker 添加额外功能的时候,之前我们是直接修改 Banker 的内容,现在我们可以单独定义一个股票Banker(实现股票方法),到这个系统中。 而且股票 Banker 的实现成功或者失败都不会影响之前的稳定系统,他很单一,而且独立。

所以以上,当我们给一个系统添加一个功能的时候,不是通过修改代码,而是通过增添代码来完成,那么就是开闭原则的核心思想了。所以要想满足上面的要求,是一定需要 interface 来提供一层抽象的接口的。

golang 代码实现如下:

package main

import "fmt"

//抽象的银行业务员
type AbstractBanker interface{
    DoBusi()    //抽象的处理业务接口
}

//存款的业务员
type SaveBanker struct {
    //AbstractBanker
}

func (sb *SaveBanker) DoBusi() {
    fmt.Println("进行了存款")
}

//转账的业务员
type TransferBanker struct {
    //AbstractBanker
}

func (tb *TransferBanker) DoBusi() {
    fmt.Println("进行了转账")
}

//支付的业务员
type PayBanker struct {
    //AbstractBanker
}

func (pb *PayBanker) DoBusi() {
    fmt.Println("进行了支付")
}

func main() {
    //进行存款
    sb := &SaveBanker{}
    sb.DoBusi()

    //进行转账
    tb := &TransferBanker{}
    tb.DoBusi()

    //进行支付
    pb := &PayBanker{}
    pb.DoBusi()

}

当然我们也可以根据AbstractBanker设计一个小框架。这个小框架,就可以看作是对外暴露的接口,想要实现业务调用,通过这个框架,并传递想要调用的参数即可。

// 实现架构层(基于抽象层进行业务封装-针对 interface 接口进行封装)
func BankerBusiness(banker AbstractBanker) {
    // 通过接口来向下调用,(多态现象)
    banker.DoBusi()
}

那么 main 中可以如下实现业务调用:

// 这里就模拟成其他 package 想要调用这个 package 里的功能以获取对银行操作后的数据。
func main() {
    //进行存款
    BankerBusiness(&SaveBanker{})

    //进行转账
    BankerBusiness(&TransferBanker{})

    //进行支付
    BankerBusiness(&PayBanker{})
}

上面的例子,看似都在一个文件中,实际上,在真实情况里不同的功能会单独放在一个 package 中,比如 SaveBanker 功能在 savebanker 包中,TransferBanker 功能在 transferbanker 包中,等等。而 main() 中的调用,实际上是模拟的外部调用。

当我们需要增加新的业务功能时,只需要增加一个新的包,包中的 结构体 同样实现 DoBusi() 方法即可。

这就是最典型、最基本的 Interface 的用法。

再看开闭原则定义: 开闭原则:一个软件实体如类、模块和函数应该对扩展开放,对修改关闭。 简单的说就是在修改需求的时候,应该尽量通过扩展来实现变化,而不是通过修改已有代码来实现变化。

接口的意义

好了,现在 interface 已经基本了解,那么接口的意义最终在哪里呢,想必现在你已经有了一个初步的认知,实际上接口的最大的意义就是实现多态的思想,就是我们可以根据 interface 类型来设计 API 接口,那么这种 API 接口的适应能力不仅能适应当下所实现的全部模块,也适应未来实现的模块来进行调用。 **调用未来**可能就是接口的最大意义所在吧,这也是为什么架构师那么值钱,因为良好的架构师是可以针对 interface 设计一套框架,在未来许多年却依然适用。

2.1 耦合度极高的模块关系设计

图中蓝色字为:耦合度极高的设计

package main

import "fmt"

// === > 奔驰汽车 <===
type Benz struct {

}

func (this *Benz) Run() {
    fmt.Println("Benz is running...")
}

// === > 宝马汽车  <===
type BMW struct {

}

func (this *BMW) Run() {
    fmt.Println("BMW is running ...")
}


//===> 司机张三  <===
type Zhang3 struct {
    //...
}

func (zhang3 *Zhang3) DriveBenZ(benz *Benz) {
    fmt.Println("zhang3 Drive Benz")
    benz.Run()
}

func (zhang3 *Zhang3) DriveBMW(bmw *BMW) {
    fmt.Println("zhang3 drive BMW")
    bmw.Run()
}

//===> 司机李四 <===
type Li4 struct {
    //...
}

func (li4 *Li4) DriveBenZ(benz *Benz) {
    fmt.Println("li4 Drive Benz")
    benz.Run()
}

func (li4 *Li4) DriveBMW(bmw *BMW) {
    fmt.Println("li4 drive BMW")
    bmw.Run()
}

func main() {
    //业务1 张3开奔驰
    benz := &Benz{}
    zhang3 := &Zhang3{}
    zhang3.DriveBenZ(benz)

    //业务2 李四开宝马
    bmw := &BMW{}
    li4 := &Li4{}
    li4.DriveBMW(bmw)
}

我们来看上面的代码和图中每个模块之间的依赖关系,实际上并没有用到任何的interface接口层的代码,显然最后我们的两个业务 张三开奔驰, 李四开宝马,程序中也都实现了。但是这种设计的问题就在于,小规模没什么问题,但是一旦程序需要扩展,比如我现在要增加一个丰田汽车 或者 司机王五, 那么模块和模块的依赖关系将成指数级递增,想蜘蛛网一样越来越难维护和捋顺。

2.2 面向抽象层依赖倒转

如上图所示,如果我们在设计一个系统的时候,将模块分为 3 个层次,抽象层、实现层、业务逻辑层。那么,我们首先将抽象层的模块和接口定义出来,这里就需要了interface接口的设计,然后我们依照抽象层,依次实现每个实现层的模块,在我们写实现层代码的时候,实际上我们只需要参考对应的抽象层实现就好了,实现每个模块,也和其他的实现的模块没有关系,这样也符合了上面介绍的开闭原则。这样实现起来每个模块只依赖对象的接口,而和其他模块没关系,依赖关系单一。系统容易扩展和维护。

我们在指定业务逻辑也是一样,只需要参考抽象层的接口来业务就好了,抽象层暴露出来的接口就是我们业务层可以使用的方法,然后可以通过多态的线下,接口指针指向哪个实现模块,调用了就是具体的实现方法,这样我们业务逻辑层也是依赖抽象成编程。

我们就将这种的设计原则叫做依赖倒转原则

来一起看一下修改的代码:

package main

import "fmt"

// ===== >   抽象层  < ========
type Car interface {
    Run()
}

type Driver interface {
    Drive(car Car)
}

// ===== >   实现层  < ========
type BenZ struct {
    //...
}

func (benz * BenZ) Run() {
    fmt.Println("Benz is running...")
}

type Bmw struct {
    //...
}

func (bmw * Bmw) Run() {
    fmt.Println("Bmw is running...")
}

type Zhang_3 struct {
    //...
}

func (zhang3 *Zhang_3) Drive(car Car) {
    fmt.Println("Zhang3 drive car")
    car.Run()
}

type Li_4 struct {
    //...
}

func (li4 *Li_4) Drive(car Car) {
    fmt.Println("li4 drive car")
    car.Run()
}


// ===== >   业务逻辑层  < ========
func main() {
    //张3 开 宝马
    var bmw Car
    bmw = &Bmw{}

    var zhang3 Driver
    zhang3 = &Zhang_3{}

    zhang3.Drive(bmw)

    //李4 开 奔驰
    var benz Car
    benz = &BenZ{}

    var li4 Driver
    li4 = &Li_4{}

    li4.Drive(benz)
}

最后修改 July 4, 2023: update (0cc1c818)